

A causal view of compositional zero-shot recognition

Yuval Atzmon¹ Felix Kreuk ^{1,2} Uri Shalit ³ Gal Chechik^{1,2} ¹NVIDIA Research, Tel Aviv, Israel ²Bar-Ilan University, Ramat Gan, Israel ³Technion - Israel Institute of Technology yatzmon@nvidia.com, gchechik@nvidia.com, NIPS 2020

Task and Problems

- Train: Seen attribute-object pairs
- Test: Seen(Familiar compositions) + Unseen(New compositions)

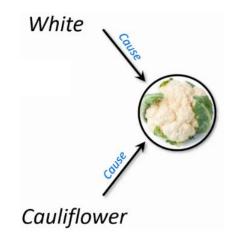
- Distribution-shift: train: red tomato; test: tomato → red
- Entanglement: white-cauliflower: which attribute is white and which is cauliflower

Most standard models:

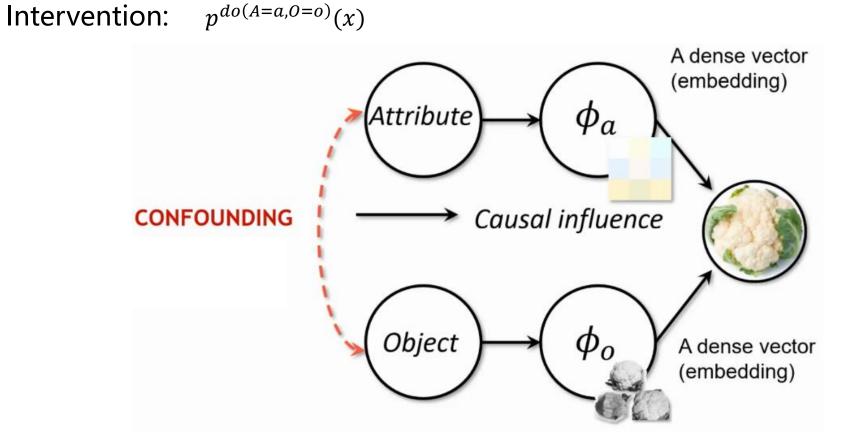
p(Attr = a, Obj = o | Image = x)

The author model the causal direction: Physical entities "cause" image features

p(Image = x | Attr = a, Obj = o)

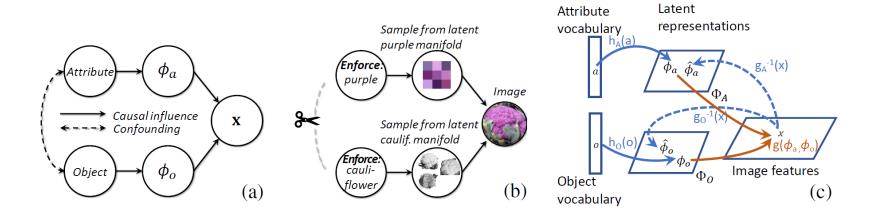


The spurious correlation of attr-obj varies between different domains.



Given interdependent attribute and object: $a \in A, o \in O$

 $p(\phi_a|a), p(\phi_o|o)$: Gaussian distribution, $\phi_a \sim \mathcal{N}(h_a, \sigma_a^2 I)$



 $x \sim \mathcal{N}(g(\phi_a, \phi_o), \sigma_x^2 I)$

$$(\hat{a}, \hat{o}) = \underset{a,o \in \mathcal{A} \times \mathcal{O}}{\operatorname{argmax}} p^{do(A=a,O=o)}(\mathbf{x})$$

How to maximize the log likelihood of the conditional distribution?

$$p(\mathbf{x}|a,o) = \iint_{\phi_a,\phi_o} p(\mathbf{x},\phi_a,\phi_o|a,o) = \iint_{\phi_a,\phi_o} p(\mathbf{x}|\phi_a,\phi_o) p(\phi_a|a) p(\phi_o|o) d\phi_o d\phi_a$$

Attribute

Latent

<u>^</u> 1 . . Approxi

timate by image:
$$\hat{\phi}_a = g_A^{-1}(x)$$

 $\hat{L}(a, o) = \frac{1}{\sigma_a^2} ||\hat{\phi}_a - h_a||^2 + \frac{1}{\sigma_o^2} ||\hat{\phi}_o - h_o||^2 + \frac{1}{\sigma_x^2} ||\mathbf{x} - g(h_a, h_o)||^2$

$$\mathcal{L} = \mathcal{L}_{data} + \lambda_{indep} \mathcal{L}_{indep} + \lambda_{invert} \mathcal{L}_{invert}$$

Independence loss:

$$\mathcal{L}_{indep} = \mathcal{L}_{oh} + \lambda_{rep} \mathcal{L}_{rep}$$

$$\mathcal{L}_{oh} = \mathcal{I}(\hat{\phi}_a, O|A) + \mathcal{I}(\hat{\phi}_o, A|O)$$

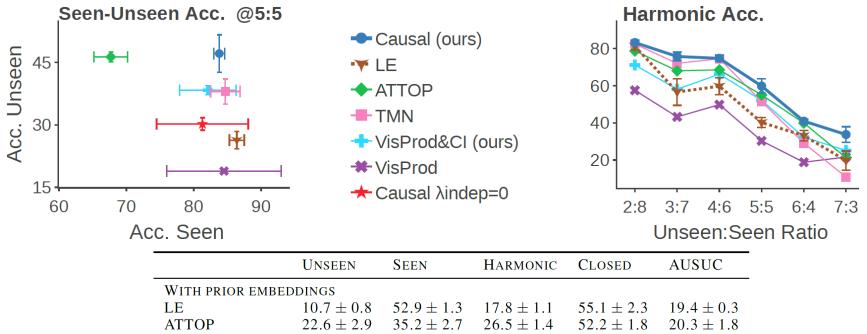
$$\mathcal{L}_{rep} = \mathcal{I}(\hat{\phi}_a, \hat{\phi}_o|A) + \mathcal{I}(\hat{\phi}_a, \hat{\phi}_o|O)$$
Hilbert-Schmidt Information Criterion

Invertible embedding loss:

 $\mathcal{L}_{invert} = CE(a, f_a(h_a)) + CE(o, f_o(h_o)) + \lambda_g \left[CE(a, f_{ga}(g(h_a, h_o))) + CE(a, f_{go}(g(h_a, h_o))) \right]$

Experiments

Data bases: Zappos (real), AO-CLEVr (synthetic)



WITH PRIOR EMBEI	DINGS				
LE	10.7 ± 0.8	52.9 ± 1.3	17.8 ± 1.1	55.1 ± 2.3	19.4 ± 0.3
ATTOP	22.6 ± 2.9	35.2 ± 2.7	26.5 ± 1.4	52.2 ± 1.8	20.3 ± 1.8
TMN	9.7 ± 0.6	51.9 ± 2.4	16.4 ± 1.0	$\textbf{60.9} \pm \textbf{1.1}$	$\textbf{24.6} \pm \textbf{0.8}$
No prior embeddings					
LE*	15.6 ± 0.6	52.0 ± 1.0	24.0 ± 0.7	58.1 ± 1.2	22.0 ± 0.9
ATTOP*	16.5 ± 1.5	15.8 ± 1.9	15.8 ± 1.4	42.3 ± 1.5	16.7 ± 1.1
TMN*	6.3 ± 1.4	$\textbf{55.3} \pm \textbf{1.6}$	11.1 ± 2.3	58.4 ± 1.5	24.5 ± 0.8
CAUSAL $\lambda_{indep}=0$	22.5 ± 2.0	45.5 ± 3.7	29.4 ± 1.5	55.3 ± 1.1	22.2 ± 0.9
CAUSAL	$\textbf{26.6} \pm \textbf{1.6}$	39.7 ± 2.2	$\textbf{31.8} \pm \textbf{1.7}$	55.4 ± 0.8	23.3 ± 0.3

- A new causal perspective: "which intervention on attribute and object caused the image".
- Disentangled representations of attributes and objects.
- The attributes and objects have distinct and stable generation processes.
- Attributes and objects are fully disentangled.